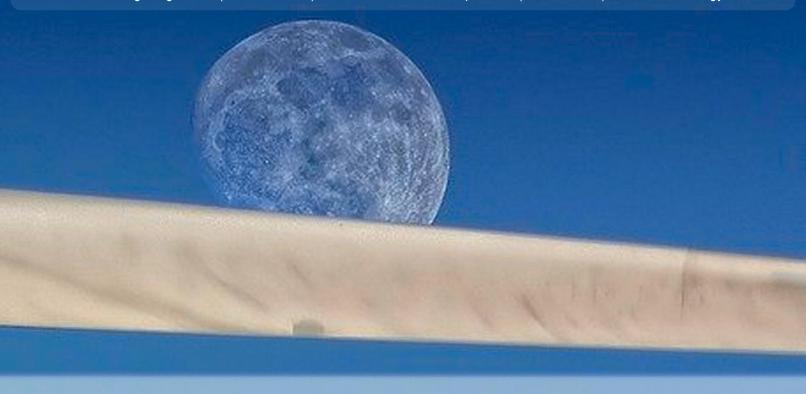


RESTORE, ENHANCE, EXTEND & PROTECT

NANO-CLEAR® FOR WIND TURBINE BLADES

- Industry Award Winning, Eco-Friendly Coatings Guaranteed to Extend the Service Life of Valuable Assets
- 23x (2,300%) More Scratch Resistant Compared To A Leading Aerospace Grade Coating for Fibreglass
- Unmatched Durability, Even in the Harshest Environments

(For Oxidized or Freshly Painted Surfaces)



v-2021.12.13-1

Assero Coating Technologies Inc.

Delivering Progressive | Collaborative | Eco-innovative / Eco-responsible | Sustainable | Proven Technology

WIND TURBINE OPERATIONS

700,000 blades in operation growing by 50,000+ blades annually. Fiberglass turbine blades and their supporting structures are subjected to conditions that lead to extreme erosion, corrosion and material fatigue. 1/3 of downtime is caused by blade failures.

TCO & ROI Impact:

Reduced performance

• Shortened service lifespan 5 - 10 yrs

5 - 8%

Increased maintenance 25%

50,000 tons / year of wind blades are landfilled.

Nano-Clear®

Nano-Clear® dramatically increases service lifespan, reduces surface maintenance costs and increases ROI.

COATINGS FOR WIND TURBINE BLADES

"To protect your investment in the future, you need wind turbine coatings which protect against the erosion and corrosion of the entire structure due to the harsh environmental conditions it faces daily."

CoatingPaint.com

Nano-Clear® reduces erosioncaused drag resistance to improve performance.

Nano-Clear® is 23x (2,300%) more scratch resistant as compared to a leading aerospace grade coating for fiberglass. (independently tested / validated - * see test results: pg 8, Table 2)

FOR NEWLY MANUFACTURED ASSETS OR IN-FIELD REPAIR WORK

Applied During Manufacturing Process

Nano-Clear® - can be integrated into current manufacturing processes.

During Maintenance Procedures

Nano-Clear® - can be incorporated into regular maintenance routines.

250₄ m₀ s

LEADING EDGE EROSION (LEE)

The front edge of a turbine blade is subjected to constant impact from airborne projectiles such as rain, ice, salt, and sand.

"The impact of liquid droplets on rigid surfaces generates water hammer pressure of several gigapascals. Later, the droplet depressurizes through lateral jets that can move two (2) to six (6) times faster than the impact velocity. Lateral jetting and water hammer pressure can exert stress beyond the solid surface's endurance limit, resulting in failure mechanisms like increased roughness, fatigue cracks, delamination, spalling, and pitting." Ducom Water Droplet Erosion Tester.

It's well known that Leading Edge Erosion is one of the largest and most costly maintenance, repair, and overhaul (MRO) issues for wind turbine blades.

NOTE - Nano-Clear® is the optimum solution for entire blade surfaces, not just leading edges.

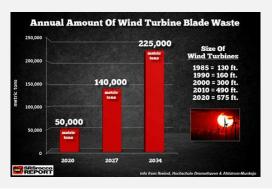
Impact On Performance

Testing has shown a drag increase of **80 - 500%** due to leading edge erosion (light-to-heavy erosion cases).

Erosion also caused a substantial reduction in lift coefficient, especially at the higher angles of attack that are experienced by wind turbines during their operation.

Aerodynamic Characteristic	Impact	Energy Capture Losses	
Leading Edge Erosion	TBD	5 - 8%	
Drag	80% (Low)	5%	
Diag	400 - 500% (High)	25%	

REDUCE CARBON FOOTPRINT / ENHANCE BRAND REPUTATION


These unrecyclable blades will lie in the ground essentially forever (or at best for many hundreds of years), as they don't degrade over time.

Operations and Maintenance (O&M) costs can total 30% of a turbine's overall annual price tag and continues to be a burden for operators.

Accelerated replacement of turbines becomes expensive: up to 2% to 4% of the value of all wind-generated power is lost as a result of this problem.

"50,000 tons of blade waste in 2020 ... will quadruple to 225,000 tons by 2034."

IMPROVING BLADE MANUFACTURING QUALITY AND THE MITIGATION OF **ENVIRONMENTAL DAMAGE**

"Unplanned maintenance and component failures are concern to both wind plant owners-operator and wind turbine manufacturers." Sandia Energy

NANO-CLEAR® PERFORMANCE FEATURES

- Reduces blade vibration / noise levels
- ✓ Increases impact resistance (superior water) droplet shock absorption
- ✓ Exceptional substrate delamination prevention
- ✓ Hydrophobic surface increases water and ice repellency
- ✓ Improves airflow (less drag)

Nano-Clear® is 23x (2,300%) more scratch resistant as compared to a leading aerospace grade coating for

NANO-CLEAR® - A NEW & BETTER OPTION

Nano-Clear® is a unique technology that uses proprietary 3D nano-structured polymers with extreme crosslink (xxLink[™]) density.


Nano-Clear® Dramatically Improves **Resistance To:**

- ✓ Erosion
- ✓ Weathering
- ✓ Abrasion
- ✓ Scratching✓ Chipping
- ✓ Marring
- ✓ Chemical Attack
- ✓ UV Degradation

Client Testimonial 1

MarAd Fleet

AFTER Application of Nano-Clear®

the coating.

Before / After

AMAZING FLEXIBILITY!

Nano-Clear® has both remarkably high

Steel panel coated with Nano-Clear®, bends in-half without cracking or any other failure to

surface hardness and flexibility.

Note: Original colour and gloss was restored with Nano-Clear[®]. Fiberglass lifeboats were **not** repainted.

"The results are stunning. I have a meticulous bosun who rolled and back brushed the product onto the boat, and despite having far from ideal circumstances (outdoors, wind, dust) the improvement to my lifeboats is remarkable."

Master/Chief Mate - MarAd Fleet

Client Testimonial 2

Metrolinx / GO Transit

After a demanding 3 year field evaluation, the contrasting images below of the entire front fiberglass sections (including light & accessory panels) of these buses clearly demonstrate the extreme protective capabilities of Nano-Clear® (NCI).

(8304) Conventional Clearcoat

√ (8305) Nano-Clear®

Reduction of **Damage**

82%

NCI = Reduction of **Product** Costs

33+%

According to Metrolinx Engineering,

"As shown above, 2 layers of Nano-Clear® has outperformed 6 layers of the (current) stone guard ... As Nano-Clear® has significantly reduced the number of stone chips to the front bumper, and has proven to be a more resilient stone guard, Engineering recommends that future bus deliveries, and buses that go out for refurbishment have the NCI stone guard applied."

> Michael Battiston, Equipment Engineering Officer **GO Transit - Metrolink**

A comprehensive System Evaluation Report from Metrolinx Engineering is available upon request.

INDUSTRIAL USERS OF Nano-Clear®

GENERAL DYNAMICS Land Systems

STERLING CRANE

INDUSTRY RECOGNITION

Nano-Clear® has been recognized for its innovative engineering by:

- NACE MP 2019 / 2020 Corrosion Innovation of the Year Award NACE (the National Association of Corrosion Engineers) sets the standards for surface preparation, coating selection, coating application, painting contractor certification, and testing.
- Frost & Sullivan Technology Leadership Award 2020 Frost & Sullivan is the premiere business consulting firm to the Paints and Coatings Industry.
- PaintSquare Prestige Award 2020 (Top Product: Coatings for Steel) PaintSquare is the premier industry publication to the Paints & Coatings Industry.

To arrange a Nano-Clear[®] application demonstration, contact Λssero at:

888.588.6986 or info@assero.co

ASSERO COATING TECHNOLOGIES

Assero Coating Technologies delivers Exceptional Surface Protection which extends the useful service life of valuable assets that operate in harsh environments. Assero is built around an ethos of delivering eco-innovative / eco-responsible, sustainable, green chemistry solutions with a line of Protective Clearcoats that reduce damage to the environment.

Nano-Clear® Test Results

Recommended Uses: For Oxidized or Freshly Painted Surfaces **Chemistry:** 3D Nano-Structured Polyurethane / Polyurea Hybrid

TABLE 1 NANO-CLEAR® WITH	OUT PERFORMANCE UPGRADES	6		
TEST PROPERTIES	TEST METHOD	RESULTS		
Crosslink Density	DMA (Dynamic Mechanical Analysis)	2.17 (x 10 ³ mol/m ³)		
VOC	ASTM D3960	1.25 lb/gal (150 g/l)		
Recommended Dry Film Thickness	ASTM D5796	1.0 mil to 2.0 mils (25.4 µm to 50.8 µm)		
Coverage	Nanovere Inhouse	1,122 ft²/gal @ 1.0 mil		
Gloss 20°/60°	ASTM D523	86.0/92.2		
ABUSE RESISTANCE				
Abrasion Resistance (CS-17, 1 kg, 1000 cycles)	ASTM D4060	8.4 mg loss		
Pencil Hardness, Scratch	ASTM D3363	4H		
Scratch Hardness	SASO 2833	2500 gm		
Pencil Hardness, Gouge	ASTM D3363	5H		
Pendulum Hardness (Persoz)	ASTM D4366	> 250 oscillations		
Impact Resistance 18°C Direct in/lbs	ASTM D2794	50 Pass / 60 Fail		
Impact Resistance 18°C Reverse in/lbs	ASTM D2794	10 Pass / 20 Fail		
Impact Resistance	SASOISO3248	1kg-160cm		
Impact Strength	ASTM D2794	145 kg - cm		
Chip Resistance 23°C / 73.4°F (2.0 mils)	ASTM D3170	7A		
Chip Resistance -29°C / -9.4°F (2.0 mils)	ASTM D3170	7B		
Falling Sand Abrasion 100 liters	ASTM D968	Pass		
MarResistance	ASTM D5178	5.0 kg		
ENVIRONMENTAL RESISTANCE				
Xenon WOM Resistance 4,000 hrs	SAE J1960 / ASTMG155	100% Gloss Retention 99% Gloss Retention		
QUV 313, >1,500 hrs	ASTM D4587	100% Gloss Retention		
Water Immersion Test 240 hrs @ 50°C/122°F	ISO 2812-2	Pass		
SaltSpray,6,360hrs	ASTM B117 / 2018	No corrosion points - Approved		
Humidity, 100% RH, 100°F / 37.8°C -240 hrs	ASTMD 1735-02	No loss of adhesion - No change		
CASS 240 hrs @ 50°C / 122°F	JIS H8502	Pass		
Thermal Shock (Heat: 100°F / 37.8°C: 3 hrs, Freeze: 3 hrs, Steam	GM9525P	No loss of adhesion - No Change		
CHEMICAL RESISTANCE				
10% Sulfuric Acid	ASTM D 1308	No effect		
10% Hydrochloric Acid	ASTM D 1308	No effect		
10% Sodium Hydroxide	ASTM D 1308	No effect		
10% Ammonium Hydroxide	ASTM D 1308	No effect		
Isopropyl Alcohol	ASTM D 1308	No effect		
Xylene	ASTM D 1308	No effect		
Skvdrol® 500 Fluid	ASTM D6943-A	No effect		
MEK Resistance - 1,500 Double Rubs	ASTM D4752	No effect		
FLAMMABILITY				
Flammability: Fire Retardant & Flame Spread	ASTM E84 / BS476	Class1(Excellent)		

	TABLE 2	COMPARISON TEST FOR COMPOSITE MATERIALS (FIBREGLASS WITH GEL-COAT) BASF VS NANO-CLEAR® WITHOUT PERFORMANCE UPGRADES					
	TEST PROPERTIES		TEST METHOD	CLEAR TOP COAT (1K or 2K)	DRY FILM THICKNESS (DFT)	ACETONE PRE-CLEAN	RESULTS
35	Mechanical Scratch Am	bient Temperature	ASTM D7027	BASF DC92 (2K)	2.0 - 3.0 mil	NA	43.853 Mean
36	Mechanical Scratch Am	Mechanical Scratch Ambient Temperature		Nano-Clear [®] (1K)	2.0 mil	NA	38.129 Mean
37	Mechanical Scratch After 7 Day 8 hr Heat Cycling @ 50°C/122°F, Ambient Cool down Temperature		ASTM D7027	BASF DC92 (2K)	2.0 - 3.0 mil	Yes	1.532 Mean
38		er 7 Day 8 hr Heat Cycling t Cool down Temperature	ASTM D7027	Nano-Clear® (1K)	2.0 mil	Yes	35.99 Mean

TABLE 3

TESTING OF CHEMICAL AGENT RESISTANT COATINGS - CARC NANO-CLEAR® WITH MATTING ADDITIVE (NCI+MA)

	TEST PROPERTIES	TEST METHOD	CONVENTIONAL COATING RESULTS	NCI +MA RESULTS
	OPTICAL PROPERTIES			
39	Gloss 20° 60° 85°	ASTM D234 ASTM D234 ASTM D234	0.7 3.6 7.4	0.6 1.3 7.8
40	Color L a b	ASTM D2244 ASTM D2244 ASTM D2244	66.66 6.02 20.71	66.66 6.02 20.71
41	Infrared Reflectance	ASTM E-903	PASS	PASS
	PHYSICAL PROPERTIES			
42	Adhesion	ASTM D3359	5B	5B
43	Pencil Hardness	ASTM D3363	2B	>6H
	RESISTANCE			
44	Acid Spot Resistance	MIL-DTL-53039E Sec 4.6.24	No Effect	No Effect
45	MEK Resistance: Double Rubs to Substrate Double Rubs to Start of Coating Dissolution	ASTM D4752 ASTM D4752	>200 20	>1,500 >1,500
46	Water Immersion Test: Visual Observation Pencil Harness Adhesion	MIL-DTL-53039 Sec 4.6.22	No Effect 4B 5B	No Effect >6H 5B

	Table 4	CONTACT ANGLE AND ICE DE-BONDING (SHEDDING) TEST			
	COATING INF	ORMATION	CONTACT ANGLE RESULTS (%)		
CONTACT ANGLE RESULTS OF FROZEN DI WATER ICE DROPLETS (%)			/ATER ICE DROPLETS (%)		
47	Control	4	3.12		
48	NCI +EC @5%	1	02.41		
49	NCI +MA @30% +EC @	5% 1	01.07		
	SHEDDING TIME RESULTS OF FROZEN I		TER ICE DROPLETS (Seconds)		
50	Control	5	8.0		
51	NCI +EC @5%	3	2.0		
52	NCI +MA @30% +EC @	5% 4	0.05		

Sample of Ice De-bonding Test on Aluminum Substrate (NCI +MA +EC: 40 seconds)

	TABLE 5	ANTI-MICROBIAL (LOG ₁₀ REDUCTION) TEST NANO-CLEAR® WITH ANTI-MICROBIAL ADDITIVE (NCI+AM)			
	TEST PROPERTIES	TEST METHOD	AVERAGE CFU/CARRIER	RESULTS (Log₁₀ Reduction / % Efficacy)	
53	Control	JIS Z 2801	3.97E+05	NA	
54	NCI +AM	JIS Z 2801	1.53E+01	6.87 / 99.99998%	

Sample Log Reduction Test (Comparing CFU (Colony Forming Units), Before & After

Assero Coating Technologies 20 De Boers Drive, Suite 202 Toronto, Ontario, M3J 0H1, Canada

TECHNOLOGIES

